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Finite segments of infinite chains of classical coupled harmonic oscillators are treated 
as models of thermodynamic systems in contact with a heat bath, i.e., canonical en- 
sembles. The Liouville function p for the infinite chain is reduced by integrating over the 
"outside" variables to a function pN of the variables of the N-particle segment that is 
the thermodynamic system. The reduced Liouville function pn, which is calculated 
from the dynamics of the infinite chain and the statistical knowledge of the coordinates 
and momenta at t = 0, is a time-dependent probability density in the 2N-dimensional 
phase space of the system. A Gibbs entropy defined in terms of pN measures the evolution 
of knowledge of the system (more accurately, the growth of missing pertinent informa- 
tion) in the sense of information theory. As p t [ -+ 0% energy is equipartitioned, the 
entropy evolves to the value expected from equilibrium statistical mechanics, and p~- 
evolves to an equilibrium distribution function. The simple chain exhibits diffusion 
in coordinate space, i.e., Brownian motion, and the diffusivity is shown to depend only 
on the initial distribution of momenta (not of coordinates) in the heat bath. The har- 
monically bound chain, in the limit of weak coupling, serves as an excellent model for 
the approach to equilibrium of a canonical ensemble of weakly interacting particles. 

KEY WORDS:  entropy; information theory; approach to equilibrium; coupled 
harmonic oscillators; Liouville function; nonequilJbrium statistical mechanics. 

1. I N T R O D U C T I O N  

W e  cons ide r  the  a p p r o a c h  to e q u i l i b r i u m  o f  a f ini te  subsys t em o f  an  infini te  cha in  o f  

c o u p l e d  h a r m o n i c  o s c i l l a t o r s - - t h e  subsys t em rep re sen t ing  the  usua l  t h e r m o d y n a m i c  

system, a n d  the  rest  o f  the  cha in  r ep re sen t ing  the  h e a t  bath .  I n  this a p p r o a c h ,  we 
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follow Blatt, m who argues that statistical mechanics is the mechanics of limited, not- 
completely-isolated systems, rather than of large, complicated ones. Interactions 
between the system and the outside world govern the approach to equilibrium, 
rather than the ergodicity of the system per  se. 

Our finite subsystem in an infinite heat bath is equivalent to the canonical ensemble 
of Gibbs. In this respect, we note that, in equilibrium statistical mechanics, calculations 
of canonical ensembles (systems open to energy flow) are usually easier and less 
strained than are those for the isolated, microcanonical ensembles, which must 
depend on ergodicity. 

We define pu ,  without reference to an ensemble, simply as the probability 
density in phase space appropriate for our N-particle subsystem, based on our 
knowledge of the system. (The phase space here considered is the 2s N-dimensional 
space, where s is the number of degrees of freedom of each particle, in which Gibbs 
represented each system of an ensemble by a point.) We calculate ON as a reduced 
Liouville function, explicitly obtained from the Liouville function O of the infinite 
system, and automatically satisfying the condition 

f r  dr '  = 1 (1) ON 

where F is the N-particle phase space. We then use for the entropy the expression 

SN = - -k~  f r PN ln(h~Npu) d F  (2) 

where h is (for present purposes) a constant with the units of action, introduced to 
make the argument of the In term dimensionless. We regard PN as a time-dependent 
function that evolves from its initial value via the equations of motion of the coupled- 
oscillator system, becoming, after a long time, an equilibrium distribution corre- 
sponding to the temperature of the heat bath. 

Our approach modernizes that of Gibbs, (~) who used an expression similar to 
Eq. (2) for entropy. With Jaynes, ~) we regard the entropy in terms of information 
theory, and note that he has shown ~4) that Eq. (2) gives the correct entropy of equi- 
librium thermodynamics when ON is the canonical distribution function. We show in 
detail that, as the system moves away in time (in either direction) from its initial 
conditions, increasingly more distant members of the chain become pertinent to the 
behavior of the subsystem. We illustrate the point made by Katz 15), who states that, 
as we move away in time from the initial conditions, we move towald a state of 
knowledge that can only be described as equilibrium. 

Mazur and MontrolP 61 have studied ergodicity and irreversibility in systems of 
coupled harmonic oscillators, treating finite and infinite systems in one, two, and 
three dimensions in great generality. Much of the development presented here is at 
least implicit in their paper, and the mathematical techniques they exhibit are widely 
applicable to much more general systems of oscillators than are discussed here. They 
do not, however, calculate either ON or any expression for the entropy. 

By a process, the physical basis of which is not entirely clear to us, Ford et al. m 
obtain Brownian motion for a single particle, harmonically coupled to a system of 
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coupled harmonic oscillators. We obtain Brownian motion of a single particle as a 
direct specialization of a more general result, simply as a consequence of the equations 
of motion and the dispersion of  our knowledge of the initial conditions. The Brownian 
motion of a single oscillator follows also from the result of Mazur and Montroll ~n~ 
that its momentum is generated by a Gaussian random process when the oscillator 
is coupled properly to an infinite chain of other oscillators. 

In Section 2, we develop the dynamics of two specific coupled-oscillator chains; 
in Section 3, the Liouville function p and its reduction PN are calculated in general 
by means of the characteristic function. Section 4 presents the specific calculation of 
PN and the entropy as functions of time for both types of chains, and, in Section 5, 
we show that, as t -+ o% we obtain equipartition of energy from reversible dynamics 
as a direct consequence of the statistics. We discuss correlations and diffussion in 
Section 6, where we obtain Brownian motion for the simple chain. Liouville functions 
of  particularly elementary subsystems are displayed explicitly in Section 7, and the 
entropies of these subsystems are developed in Section 8. In Section 9, we discuss 
some pertinent background material and the significance of the present work, and 
Section 10 is a brief historical note, citing earlier work and its relationship to the 
present paper. 

2. D Y N A M I C S  

In this section, we present the solutions to the two kinds of infinite systems to be 
considered: (a) An infinite chain of  masses and springs, as shown in Fig. la, for 
which the Hamiltonian is 

Ha = ~ [(p.2/2m) + �89 -- x.) 2] (3) 

and (b) an infinite chain of masses and springs, with each mass harmonically bound 
to its coordinate origin via an elastic bar, as shown in Fig. lb. Here, the Hamiltonian 
is 

Hb = ~ [(p.2/Zm) + �89 - -  xn) 2 @ �89 (4) 

The solution can be obtained by either of two methods: (1) a direct attack of 
the equations of motion of  a particle, leading to an infinite series, or(2) a normal-mode 
analysis of a finite system, inversion to obtain x(t) and p(t), and calculation of the 
limit as the number of  particles in the chain becomes infinite. In either case, the 
solutions of the equations of motion can be written 

and 

x.(t) = ~ [X.+r(O)fr(t) + pn+~(O) g~(t)/m~Q] (5a) 
r ~ - o v  

p~(t) = m dx~(t)/dt = m~n(t). (5b) 
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Fig. 1. The two coupled harmonic oscillator chains of this paper, consisting of a thermodynamic 
system of masses numbered 1 to N and their connecting springs, and a heat bath of the rest of the 
chain, extending infinitely far in both directions. Case (a) is a simple chain, whereas case (b) has each 
mass harmonically bound by a leaf spring of constant K to a rigid support structure. 

In case (a), fT(t) is given by a simple Bessel function as 

L ( t )  = J2T(2wt) (6) 

where co ~ = k/m, and g~(t) is given by 

l g~(t)/Y2 = J2~(2wt') dt'. (7) 
fl 

In case (b), we obtain 

fr(t) = ~-1 d~ cos r~  cos[Dt(1 - -  2~ cos ~)1/~] (8) 
0 

where ~2 = (K § 2k)/m and ~, = (co/D) 2. In  the most  useful subset of  case (b), 
the coupling springs k are much  weaker  than  the localizing spring K, so that  we have 
11 ~ 1. In  this case, Eq. (8) can be approximated  as 

f r ( t )  = Y~(~'/2t)cos[g2t - -  (r~r/2)] (9) 

and  the corresponding expression for  gT(t) is 

g~(t) = J~(~,s sin[.Qt - -  (r~/2)]. (10) 

In  bo th  cases, the solutions are t ime reversible; i.e., x,(t)  = x , ( - - t ) ,  and p,(t)  = 
--p,~(--t). The importance  of  any particle 's  initial conditions to its own future (or 
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past) is seen to diminish as I t [ increases, and the distance of the most important 
members of the chain is seen to grow. Herein lies the key to the approach to equi- 
librium. 

3. T H E  L i O U V I L L E  F U N C T I O N  

One of the main results of this paper is the calculation of the Liouville function, 
or reductions of it, from a knowledge of the exact solutions of the dynamical variables 
x~(t) and p~(t) in terms of initial values, as given by Eqs. (5)-(10). Given an initial 
probability distribution for the set {x~(0), p~(0); all n}, we seek the probability 
.distribution for these quantities at time t; i.e., we solve for the Liouville function at 
time t in terms of its value at t = 0. 

The solution can be given simply in terms of the characteristic function 
r {q~}, t) ~ r q, t) as 

p({x~), {p~), t) = f exp[--i(k �9 x + q .  p)] r q, t) I~ (dk~/2~r)(dq,/27r) (11) 
~t 

where k "x = ~2~ k,,~Xn, q ' p  -- Y~,~ q.~p~, and n ranges over all the (infinite) set of 
particles. The p given by Eq. (11) for the infinite chain satisfies the Liouville equation. 
The characteristic function is defined as 

~(k, q, t) : f exp[i(k �9 x + q .  p)] p(x, p, t) [[ dx~ (12) 
qz 

,or 

~(k, q, t) = (exp[i(k . x  + q .  p)]} (13) 

where (..-} denotes the average over the entire phase space. But, since each x~(t) 
and p,(t) is given by Eqs. (5) in terms of the initial conditions x~(0), p,,(0), and t, 
"we may obtain the average of Eq. (13) by integrating over the initial conditions, or 

~(k, q, t) = f exp[ik �9 x(t) + iq.  p(t)] p[{x~(0)}, {p~(0)}, 0] 

• H dx~(O) dp~(O). (14) 
f t  

We are interested principally in the Liouville function reduced for an N-particle 
subsystem of the chain. This function, denoted by pU({X~}, {p~}, t), depends only on 
the positions and momenta of the particles in the subsystem and is obtained from p 
by integrating over all the x~ and p~ that are not in the subsystem. We obtain 

N 

pN({X~}, {p.}, t) = J exp[--i(k �9 x + q "P)N] CN( k, q, t) H (dkn/2w)(dq./2w) (15) 
n = l  

where 

q~-(k, q, t) = f exp[ik �9 x(t) + iq" p(t)l~ p[{x,(0)}, { p~(0)}, 0] 

• I-[ dx.(O) dp.(O). (16) 
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Thus, the influence of the particles outside the subsystem is taken into account 
because the initial conditions of the entire chain enter the calculation of the reduced 
characteristic function r in Eq. (16), which then determines PN in Eq. (15). 

4. C A L C U L A T I O N  OF ON 

The system to be studied consists of N adjacent particles of an infinite chain, the 
remainder of which is regarded as a heat bath. We suppose our knowledge of the initial 
positions and momenta of the particles in the system to be expressed as skewed 
Gaussian probability distributions that may be as narrow as techniques of measure- 
ment permit. The initial conditions of the heat bath are also expressed as Gaussian 
distributions, this time not skewed, since we assume no individual knowledge of 
members of the heat bath�9 We do, in a sense, make a nonthermal assertion about the 
heat bath when we assume the initial distributions to be uncorrelated Gaussians, 
rather than the canonical exp(--fiH), but the resultant simplification almost justifies 
the procedure. Our principal justification, however, is our thesis that equilibrium is a 
state of knowledge; therefore, even when the initial distribution of the surroundings 
is nonthermal, the subsystem and its surroundings should evolve to a final state of 
equilibrium as a consequence of the temporal diffusion of ignorance, which is implicit 
in the dynamics developed in Section 2. We verify that this point of view is valid in 
Sections 5-7�9 

We therefore write p({x}, {p}, 0) as the product of four products, two over the 
coordinates of the subsystem, here numbered 1 to N, and two over the coordinates 
of the bath, where/7'  denotes the omission of subsystem variables. We have 

I~ exp{-- Ix,(0) -- u,]2/2~ 2} ~-~ exp{-- [ p,(0) -- v,]2/282} 
p({x}, { P}, 0) .=1,1 ~(2~)1/~ ~-11, ~(2,~)1/~ 

• I-I' exp[--x~Z(0)/2r I-I' exp[--Pn2(0)/2~] (17) 
~(2~)~/,~ ~(2,~)~/~ 

The expressions needed for Eq. (16) may be written, by use of Eqs. (5), as 

N 

k"  x(t) ---- ~ ki i [x.(O)f._i(t) q- p~(O) g._i(t)/mf2] 
i=i n=--m 

- -  i x (o) i i 
o~ N 

el" p(t) -- m ~ x,(0) Z q~f._,:(t) + m 

N 

[p,(O)/mD] ~, k~ g,~_~(t) (18) 
i = l  

Iq 

i [p,(O)/m(2] ~ qi~,-i(t) (19) 
n=-oo 7=I n=--oo i=I 

�9 oo 2 

We now calculate ~btv(k, q, t) from Eqs. (16)-(19), using J'_o~ exp(--ax -}- bx) dx = 
(~/a) 1/2 exp(b~/4a). The result is 

6 

q~N(k, q, t) = I-[ P~ (20) 
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where 

l I P~ = exp i ~ u. [k~f~_~(t) + mqj~_~(t)l (21a) 
'n,=l j = l  

P~ = exp i (vn/m~) [ks g~_j(t) + mqs ~n_j(t)] (21b) 
j = l  

P3' = exp --~2/2) k~fn_j(t) + mqj~_j(t (21c') 

P4' = exp (--3~/2m2~ 2) [kj g._j(t) + mqj~._j(t)] (21d') 
j = l  

P~' = exp ' ( - -d /2 )  [kjf._s(t) + mqjn_j(t)] (21e') 
j = l  

P6' = exp '(--~2/2m2~2) [kj g._~(t) + mqj ~._~(t)] (21f') 
j '= l  

are the naturally arising factors in the integration of Eq. (16). We note, however, 
that Y'.' in P~' and P(  can be replaced by Y..~=_| if appropriate changes are also made 
in P3' and P4'; therefore, we write 

P3 = exp [(e 2 - -  c~2)/2] [kjf._j(t) + mq~f._j(t)] (21c) 
j = l  

P4 = exp [(~2 _ ~2)/2m2~21 [k5 g._~(t) + mqj ~._j(t)] (21d) 
1 j = l  

P5 = exp [k~.f~_~(t) + mq~f._~(t)] (21e) 
n ~'=i 

P6 = exp (-- ~/2m~? ~) [k~ g._~(t) + mq~ ~._j(t)] . (21f) 
x n = - - m  j=l 

The double finite sum in Eq. (21c) is now replaced by 

N 

y~ [~Jc;A.(t) + 2lc,q~a~(t) + q,q~C~(t)l 
g,j=l 

where 
N 

A,~(t) = ~ f~_ , ( t ) f~_ / t )  = Aj~(t) (22a) 
~ = 1  

N 

B~j(t) = m Z f~_~(t)f~_j(t) (22b) 

N 

C~j(t) = m ~ ~ L_,(t)L_/t) = G, ( t ) .  (22c) 
n = l  
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The sum in Eq. (21e) is replaced in exactly the same manner  by the expression 

N 

~. [kikjaij(t) 4- 2kiqjb~/t) + qiqjeij(t)] 
i , j ~ l  

where ai j ,  b~j, and % differ f rom Aij,  Bij, and C~. only by having Y.~_~ instead 
f N o ~ = 1  - Also, since f,. = f _ ; ,  it may  be shown that  b~j = bj~, a result that  is not  t rue 

for  Bi~-. 
We use well-known properties of  Bessel functions to calculate a~;, bi; ,  and % 

in closed form for the two specific chains of  Fig. 1. For  case (a), we obtain 

2air-(t) = 3ij + &(i_j)(4oJt) (23a) 

2biJt)  = eom[J2i_2j_~(4a~t) -- J2/_2j+a(4oJt)] = (m/2) d[J2i_=j(4oJt)]/dt (23b) 

2eli(t) = (moo)~[J~i_2J+2(4r -~- Jzi_2~-2(4r - -  2Jzi_zj(4o~t) 
-b 2J=~_2~(0) - -  J2~_2~-+2(0) - -  Ja/_2~_~(0)] (23c) 

and, for  case (b), the results are 

2a~j(t) = 3ej + Je_j(ZyOt)cos[2Dt - -  �89 - - j ) r r ]  (24a) 

2b~j(t) = --mf2Ji_j(ZyX2t) sin[2/2t - -  �89 --  j)rr] (24b) 

2%( 0 = (mO) z 8~j - -  (mf2)2Ji_j(Zyf2t) cos[ZDt --  1(i -- j)rr] .  (24c) 

Similarly, the double finite sum in Eq. (21d) is replaced by 

[k~kjDij(t) + 2k~qjEi/t) + qlq~A,j(t)] 
i ,]=l  

where dij appears again because 2~- = D~., and 

N 

Dij(t) = (mr2) -z ~ g,-i(t) g,_Jt) = Oji(t ) (25a) 
n = l  

iV 

Eij(t) = m-a[2 -2 2 gn-i(t) ~,-j(t) (25b) 

and the double sum in Eq. (21f) is replaced by 

N 

(mr2) ~ ~ [kik~ di~(t) q- 2kiq~%(t) + qiq~aij(t)] 
i , j = l  

where, as before, di] and ei~ differ f rom Di~ and Ei~ only by having 32n~_~ instead o f  
2V 

~2~=z �9 Also, as before, we obtain e~ = e~ ,  a result that  is not  valid in general for  Ei~. 
The quantities de~t) and %(0 can be calculated in closed form; for  case (a), we obtain 

d,,(t) = (t/2oom~) [ f Jo(y) dy--dl(&Ot)]--(2o)m)-~ ~ f J2n-~(y) dy (26a) 
~ " 0  n = l  ~ 0  
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and 
4c~r 

eij(t) = (4r -1 ~ J~.i-ej(Y) dy 
~0 

and, for case (b), the results are 

dij( t ) = (mf2)-4%( t ) 

and 

eij( t ) = --(mX2)-Zb ij( t ). 

Using these results, we now write Eq. (20) as 

[ N 1 (fi~(k, q, t) = exp -- �89 ~ (k~k~M~j + kiqjH~j + q~qjQ~j) + i ~ (k~U~ + q~Vj) 
i,J=l j 

where 

401 

(26b) 

(27a) 

(27b) 

(28) 

Mij = (a 2 -- e2) Aij + daij + (~2 -- ~2) Di~- + ~2 d~. = Mji (29a) 

Hi ~ ~_= (c~2 __ e2)  Bi ~ @ e2bi3 @ (~2  _ ~2) Eij @ ~2eij @ His (29b) 

Qi~ = ( c~2 - e2) Cij ~, E2Cij "~- (~2  - -  ~2) Ai~ -t-" ~2ai j  = Qji (2%) 

N 
Uj = Z [u.L_~(t) + (v . /mO)g._j( t )]  (29d) 

N 
Vj = m Z [unf~_j(t) + (v./mf2) ~._j(t)]. (29e) 

At this point, we adopt a more convenient matrix notation, defining a column 
matrix Z of the k~-, qj components such that its transpose is 

2 ~ (klk2 .... , kNql ,..., qN) (30) 

and a real, symmetric matrix W = (W~j) given by 

where M = (Mij), etc. We also include the initial Gaussian centers of the subsystem 
in the column matrix R, the tranpose of which is 

(32) =- (U1U2 ..... U N V l  ,..., VN). 

The characteristic function of the subsystem may be rewritten, from Eq. (28), 
in the new notation as 

~N(k, q, t) = exp[ ikZ -- (2WZ/2)]  (33) 
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from which we proceed to calculate PN by means of 

N 

pN({x~,}, {p,}, t) = f exp[i(/~Z - -  2,~Z) - -  ( Z W Z / 2 ) ]  I-I (dk,/2~r)(dq,/2~r) (34) 

where 

2 ~ (x~x~ ,..., x~,pl ..... p~ ) .  (35) 

Since W is a real, symmetric matrix, it can be diagonalized by an orthogonal 
transformation; we let L be the matrix that diagonalizes W, such that 

L - ~ W L  = A (36a) 

where A is diagonal, with diagonal elements labelled A~ ..... )t~ v . We can then write 

2 W Z  = ~ L L - Z W L L - Z Z  = ; Z L A L - Z Z  = 2"LA~,Z (36b) 

since L -1 = L. We now write 

o r  

[ , Z  = G (37a) 

Z = L G  (37b) 

where G is a new column Vector, and Eq. (36) becomes 

2 W Z  = ~ A G .  

We transform X and R by the same matrix L, defining new column vectors 

and 

so that Eq. (34) becomes 

(38) 

N 

PN = f exp[i(-P - -  ~ )  G - -  (OAG/2]  l-I (dk,J27r)(dq,J2rr). (40) 
' a = l  

N 2N  2N 
We change the variables of integration from I-I~=l dk,~ dq,~ =- I-Ii=a dZ~ to I-Ii=l dG~.  
We note that the Jacobian of the transformation is simply L det L [ = 1. Thus, since 
A is diagonal, we obtain 

2N 

ON ~ I-[ (27r) -1 f exp[i(F~ - -  Y~) G,~ - -  (G~A ,J2 ) ]  dG,~ 

2N 

---- l-[ (2~rA~) -~/2 exp[-- Y~/2~  n] (41) 
3=1  

where 

Y ' = Y - - F .  

Y = / ~ X  (39a) 

F--~/S,R (39b) 
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But, since we know that 

and 

2N 

I~ (~,)-1 = 1/det W (42) 

I-I exp[-Y~2/22t.] == exp - ~ Yff/2,~n = exp[-- f" / l -~Y/2]  
~=1 ~=I 

and since, from Eqs. (38)-(40), with X' = X -- R, we have 

f " A  -1Y = X~'LA-I~,X ' ---- X-' W-1X ' 

we may finally write 

pN({X,}, {p,} t) = (2rr)-N(det W) -~/2 exp[--J?'  W-~X'/2I 

(43) 

(44) 

(45) 

The reduced Liouville function PN is displayed in Eq. (45) as a function of  the 
2N-square matrix W, and the column matrix X', both of which are time-dependent. 
The dependence on the initial most-probable values u~ and v~ enters only via 
X'  = X -- R; these values appear in R, or in its components U~. and V~ of Eqs. (29d, e). 
Note that, since all finite sums of the f i ,  g j ,  or their time derivatives will vanish as 
t -*  0% pu eventually loses all dependence on the initial measurement of the subsystem. 
The matrix W, through its elements given by Eqs. (29a-c), contains both finite sums 
(the capital letters) and infinite sums (the lower-case letters) of the f i ,  g ; ,  and their 
time derivatives. The former vanish as t--+ oo, and the latter are explicitly given for 
our two cases by Eqs. (23), (24), (26), and (27). 

The entropy of the subsystem is, from Eq. (2), 

N 

SN = --k~ f PN ln(hUpN) I-I dxs dpj (46) 
j = l  

(47) 

which, after straightforward calculations, becomes 

SN ~- kBN q- kB ln[h-Ze(det W) I/2] 

where h = h/2rr, and h is, for classical purposes, only dimensionally equal to Planck's 
constant. The entropy SN does not involve u~ and v~ ; it measures missing pertinent 
information in the sense of information theory, (3-5) starting with the correct informa- 
tion-theoretic entropy, based on the observations at t = 0, and evolving in time to 
the correct thermodynamic entropy as calculated from conventional equilibrium 
statistical mechanics. We shall examine in more detail several specific, simple cases 
in Sections 7 and 8, and discuss the results more generally in Section 9. 

5. E G I U I P A R T I T I O N  O F  E N E R G Y  

In this section, we demonstrate equipartition of  energy for both types of chains. 
The kinetic energy of the rth particle is pr2/2rn, and the potential energy for the 
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harmonically bound particle of case (b), when K>~ k, is approximately mO2xr~/2. 
For the simple chain of case (a) however, the meaningful potential energy is that of a 
spring, given by k(x,.+z -- x~)2/2. From the initial distribution of Eq. (17), it is easily 
seen that, for the chain outside the subsystem, the initial energy expectation values are 

(p,3)o/2m = ~2/2m (48) 

mf22( x~25o/2 = m~%2/2 (49) 

and 

k((x~.+~ - x ~ ) % / 2  = k~.  (50) 

Thus, we see that, unless e and ~ are chosen for the purpose, the kinetic and potential 
energies in the outside system are not initially equipartitioned, and, inside the sub- 
system, the energies can be anything. We now proceed to calculate, using PN of 
Eq. (45), the time-evolved energy terms corresponding to those of Eqs. (48)-(50). 
Since we are interested at present in limits as t --+ o% we replace X'  in Eq. (45) by X, 
since the effects of initial conditions will have vanished. We first calculate (x~ ~) 
for r in the subsystem as 

N 

<x~5 = f x /p.({x .} ,  { p.}, t) I-I dx. ap. 

N 

= (2w) -~r (det W)-a/2 f x,~ 2 exp[--f(_W-iX/2] I~ dxn dp,,. (51) 

2N 
We write, by Eq. (39a), x~ = 52j=~ L~jYj, and use Eq. (43) to obtain 

(x~Y) = (2w) -~" (det W)-x/2 f ~ = L'iL~'sYiYjexp -- ~=1 • Y~212;~'~ ,=lH dY, 

2N 

= ~2L~Aj 
5=1 

(52) 

(xfl5 = L,.AL~ (53) 

where Lr is the rth column vector of the matrix L. Therefore, we obtain simply that 

(xf l )  ~ W,r~ = M~.~ (54) 

by Eq. (31). Then, from Eq. (29a), we have 

( x / )  = ( ~  - E ~) A~ + E~a~r + (~  - ~)  D~ + ~ d ~ .  (55) 

Similar calculations yield 

(pr=) = Q~ = (a2 _ e2)C,.. + dc~.. + (a s - ~2) A~,. q- ~=a~,~. (56) 
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and 

((x~+l -- xr) "~) : M~+a.~+l -- 2M~,~+I + M~ 

= (a 2 -- d)(Arr + A~+l.~+a) + e2(a~,. + a,.+z,~+O 

@ ( c~2 - -  ~2)(Drr @ Dr+a,r+l) @ ~2(drr @ dr+l.r+l) 

- -  2 ( ~  2 - -  d )  A~,~+I - -  2 e 2 a ~ , , + l  

2 ( ,  ~ - r D~,~+~ - -  2r (57) 

We now evaluate the quantities needed for the final energy in the two cases, 
noting, first, that all upper-case letters in these results represent finite sums of functions 
that vanish as t -~ ~ ,  and that we need only the lower-case letters already expressed 
in Eqs. (23), (24), (26), and (27). 

For  case (a), the simple chain, the kinetic energy is 

~p~.~)/Zm = (d/Zm)(m~o)2[Jo(O) 2_ j2(4oot) _ Jo(4eot) ] + (~2/4m)[1 + Jo(4wt)] 

--+ �89 + moJ%2J (58) 

.and the potential energy of a spring is 

k((x~+l -- x~,.)'~)/2 -- (ke~/2)[1 + Jo(4wt) -- J2(4~ot)] -? (k~2/4m2to~)[1 -- Jo(4OJt)] 

-+ �89 + tnoJ% ~] (59) 

since k = m~o 2. Equations (58) and (59) show not only that all the masses of the 
system have the same final kinetic energy, which is equaI to the final potential energy 
o f  each spring, but also that energy is really shared, since the term in square brackets 
in these equations is just the sum of the initial kinetic energy of an outside mass, 
f rom Eq. (48), and the initial potential energy of an outside spring, as given by Eq. (50). 
It is convenient here to define an equilibrium temperature for system (a) by 

kBT, = (~2/2m) -t- moJ% z (60)  

so that Eqs. (58) and (59) may be written 

@,Y)/2m --+ k f ( x r +  1 - -  Xr)2) /2  --)" kBT,/2 (61) 

A similar calculation for the harmonically bound chain, case (b), yields 

(p~2)/2rn = (mS22e2/4)[1 -- Jo(2yg2t)cos(2X2t)] -/- (~2/4rn)[1 + Jo(2y~Qt)cos(2~Qt)] 

-+ ~[(~2/2m) + (mX-2zez/2)] (62) 

and 

mX22(xr2)/2 = (mf22E2/4)[1 + Jo(2y.Qt) cos(2Dt)] -/- (~2/4m)[1 --  Jo(2yDt) cos(2f2t)] 

-+ �89 + (mY22/2)e2]. (63) 
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Again we have found equipartition, and again we define an equilibrium temper- 
ature by 

ksT~ = (~2/2rn) + (mX22/2)s ~ (64) 

where, this time, the energy on the right-hand side of Eq. (64) is the total average 
initial energy of a particle in the heat bath. (Here the, coupling energy has been 
neglected; its inclusion still leaves the average equilibrium values of kinetic and 
potential energy equal, but apportions the potential energy between the two kinds of 
springs.) 

Evidently, we could have chosen any part of the chain for the calculation of the 
equilibrium value; our result therefore shows that the entire chain approaches 
equilibrium, and that equipartition is a directly-derived consequence of the use of the 
reduced Liouville function PN to calculate averages. We discuss this result further in 
Sections 7 and 9. 

6. C O R R E L A T I O N S  A N D  D I F F U S I O N  

Two different kinds of correlations may be examined--those relating the value of 
a dynamical variable at time t to the value of a dynamical variable at t : 0, and those 
relating two dynamical variables at time t. The former follow almost trivially from 
Eqs. (5) and (17), without the necessity for further statistical analysis. As an example, 
the first kind of correlation coefficient for two momenta can be calulated as 

P[p~(t),p~+,(O)] ~ (p~(t)p~+~(O)}/[(p2(O)}(p~+,~(O)}] 1/2 

__ ~-2 f p~(t) pr+,(O) p({X}, { p}, 0) l~I dxj(O) dp~(O) (65) 
j=--oo 

provided both masses are members of the heat bath (for simplicity) and p~+n(t) is 
given in terms of the initial conditions by Eq. (5b). The integrand is an infinite sum 
of terms, each of which is odd in p,+,(0) except for the one term in p~,(t) that depends 
on p,~+~(0); its coefficient is ~,.(t)/f2 = fr(t), and the integral of that single nonzero 
term is ~%(t). Thus, we have 

P[p~(t), p~+,(0)] = f~(t) (66) 

wherefn(t) is given by Eq. (6) for case (a) and by Eq. (8) or (9) for case (b). Similarly, 
we find, for the coordinates of the heat bath, 

Pixy(t),  x~+.(0)] = L(t) (67) 

the same result as for the momenta. These results and their implications have been 
discussed by Mazur and Montroll, 16~ who obtained (66) differently. 

The second kind of correlation is more interesting; it may be calculated either 
directly, by the method of Eq. (65) with both dynamical variables time-dependent 
and expressed in terms of the initial conditions by Eqs. (5), or by the method displayed 
in Section 5 for such quantities as (x~2}. In either case, the results may be conveniently 
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expressed in terms of the already-defined elements of the matrix W of Eq. (31). We 
obtain 

Pixy(t) ,  x~+,~(t)] = Mr.,.+~/[M~M~+,~,~+,~]i/2 (68) 

P[p~(t), p~+,~(t)] = Q~.~+~/[Qr~Q~+~,~+~]~/2 (69) 

and 

P [ x / t ) ,  pr+~(t)] = Hr,r+~/[Mr~Q~+~,~+,,] 1/~. (70) 

For case (a) as t---* 0% Eq. (69) gives 

P[p~(t),p~+,~(t)]--~ [~8o,~ 4- (mooe)2(28o,~ -- 81,~ -- 88~)1/[~ = q- 2(rnooe) 2] (71) 

so that momenta of adjacent particles are seen to be anticorrelated, with a correlation 
coefficient of --1/4 (when ~2/2m = m o J % 2 =  kTa/2) ,  and no other momentum 
correlations exist. For case (b), all off-diagonal momentum correlations vanish as 
t--+ 0% as do the position correlations. 

Before examining the limit of Eq. (68) for case (a), we first evaluate (x~),  as 
expressed by Eq. (55). Only a~ and d,.~ persist for large values of t; these yield 

(x~ 27 --~ E2/2 + (~=,/2corn 2) [ ( ~ J o ( y ) d y  - -  Jl(&ot)]. 
L ~  0 

(72) 

For large I t I, the integral approaches 4-1, depending on the sign of t, and Jl(2oJt) = 
O(t-*/2), so that Eq. (72) becomes, with ~r -- t/I t r = ~ 1 ,  

(xr  2) --+ (~zet/2com 2) 4- O(tl/=). (73) 

This result may be understood as a Brownian motion of the particles of chain (a), 
which are not harmonically bound to any home position, and thus may be expected 
to drift. We may identify a coefficient of diffusivity from the relation ~x ~) = 2DI t J, as 

D = ~2/4o0m2. (74) 

If  the heat bath energies were initially equipartioned, so that r = ma~2e 2 = k~T , /2 ,  
as in Eq. (60), then Eq. (74) becomes 

D = k B T , / 4 m w  (75) 

We note, however, that Eq. (74) correctly relates D to the initial variance in the 
momentum distribution of the heat bath, but not to e, a result we believe to be new. 

We now calculate (x~(t)x~+n(t)) ,  for large values of t, as 

f4oJt  
<x~xr+,) -+ (xrx~)  - -  (~/2o0m) 2 J ~ - z (  Y) dy. 

k = l  ~ 0  
(76) 

For large times, the integrals in Eq. (76) are very nearly unity, so we may write 

(XrXr+,) --+ (XrX~) - -  (~/2com)2n (77) 
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showing that the correlation deteriorates as the separation increases. However, for 
any finite separation, the correlation coefficient approaches unity as t ---* 0% or 

P[xr(t), xr+,(t)] ~ (x~x,,+,~}/[(x~2}<x,~+,~}] ~/2 

- - - .  1 - ( n / o , t ~ ) - +  1. (78) 

The complete correlation, in the limit, of  all positions of a finite length of the 
chain simply implies that the Brownian drift cannot lead to appreciable storage o f  
energy in the coupling springs. We examine another aspect of this Brownian motion 
in the next section. 

7. L I O U V I L L E  F U N C T I O N S  F O R  S I M P L E  S Y S T E M S  

In this section, we display On from Eq. (45) explicitly for a one-particle system 
of both types and for an N-particle system, after a long time, for case (b). The cal- 
culation of 0N requires that we obtain W -1, which is given, for N = 1, by 

( Qn W -~ = (det W) -1 ~_HI~ 

leading directly to the result 

pl(x, p, t) = [(2~r) 2 (M,1Q11 -- H~1)1-1/~ 

where 

and 

- -Hi l l  (79} 

! v t 2 • exp[ - (Qnx '2  - 2Hnx  p '-- M n p  ) /2(MnQll  - -  H~I)] (80) 

x'  = x -- U1 = x -- ulf0(t) -- (vl/m~)go(t) (81a) 

p '  = p - -  V 1 = p - -  b l l m f o ( t  ) - -  (Vl/ff2) g 0 ( l ) ,  ( 8 1 b )  

For case (a) at large I t I, Mn  is given by Eq. (73), Qll by Eq. (58), and H~, is 
obtainable from Eq. (29b) in the iimit as 

H n  --+ e2bn 4- ~2ea~ --+ cr~2/4oom. (82) 

Using Eq. (74) for D, we write, still for case (a), 

--(mkBTax 2 -- (rmDxp 4- 2p2Dcrt) 
• exp 2[2k~TamD(~t -- (roD~2) z] (83) 

a result that depends on time, but not in an obviously understandable way .To expose 
pa for better analysis, we reduce it again, first integrating px(x, p, t) over x to obtain 
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the momentum distribution function, and then integrating pl(x, p, t) over p to obtain 
the coordinate distribution function. We have 

F Pl(p ,  t)  ~ -~  pl(x ,  p, t)  d x  

= (2~rrnkBT~) -1/2 exp(--p2/2mkBTo) (84) 

the proper canonical distribution function for the momentmn. Similarly, the integral 
over p gives 

pl(x, t) ~ p~(x, p, t) dp 

~- (4zrDet)-~/z exp[--x2/4Dcrt] (85) 

which is just the proper distribution function to satisfy the one-dimensional diffusion 
equation 

~p/~t -= D ~2p/~x2 (86) 

in agreement with the results of the previous section. 
Brownian motion is usually obtained from the motion of a particle in a viscous 

medium, subject to a stochastic force. The presence of the viscous drag destroys 
time-reversibility in the dynamics. Here, the result was obtained without an irreversible 
force, and the result of Eq. (85) is time reversible in the sense that p~(x, t) -= p~(x, - - t ) ,  
since eft = J t r- The diffusion as expressed by px in Eq. (85) is a statistical result, 
representing the fact that our knowledge of the system becomes increasingly poorer in 
both directions of time as we move away from t = 0. From our limited knowledge 
of the present, we can neither predict the future nor unravel the past. 

For case (b), the harmonic binding prevents diffusion, and Eq. (80) yields, for 
large values of t, 

p~(x, p, t) = ([2/2zrkBTb) exp[--(m.Q2x 2 -k p2/m)/2kBT~] (87) 

a result that is seen without further analysis to be the product of two canonical 
distributions, one for x and the other for p, at the equilibrium temperature Tb. 

Since W becomes diagonal as t --~ oe for case (b), we easily obtain pN({x}, {p}, t) 
from Eq. (45) as 

pN({X}, {p}, t)--: (~/2rrkBTb) N exp [--(2kBTb) -1 L (m~2x~, 2 +  P~2/rn)] 

/g  

-~ H pl(x~ , p ,  , t). (88) 
Yt=l  

This is the expected result for a canonical distribution of very weakly interacting. 
oscillators. 

8. T H E  E N T R O P Y  FOR SIMPLE SYSTEMS 

Equation (47) gives the information-theoretic entropy of the system at any time, 
through the time dependence of W. We shall examine the entropy for the three simple: 

8z2/z/3-3 
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systems of the previous section, all for large values of time. The one-particle, case (a) 
system gives 

Sz = k,  + kB In h-~[2k,  TamDat - -  (mD/2)2]~/~. (89) 

Here, we find the entropy increasing without limit as In t, a result that agrees with the 
previously derived Brownian motion. 

The one-particle, case (b) system gives 

S~ = k~[1 -5 ln(knTb/hs (90) 

and the N-particle system gives SN = NS~ ,  as it should. The entropy of Eq. (90) 
arose as t -+ ~ through our information state being describable only as equilibrium; 
yet, it agrees exactly with the classical canonical entropy of a harmonic oscillator in 
equilibrium with a heat bath. Thus, we have demonstrated that our procedure leads 
to the correct thermodynamic equilibrium. 

9. D I S C U S S I O N  

Systems of coupled oscillators have been studied extensively in the attempt to 
establish a dynamical basis for equilibrium statistical mechanics. A finite~ isolated 
system of coupled harmonic oscillators does not approach equilibrium or share 
energy among its normal modes. Fermi et al. (8) carried out computer studies of a 
finite, isolated system of coupled anharmonic oscillators, believing, as J. Ford ta) did 
later, that the nonlinear forces would produce a Gibbs-like stirring in phase space, 
thereby leading to ergodicity, energy sharing among the normal modes of the linearized 
system, and equilibration. They found very little tendency toward equipartition, 
though Ford and Waters (z~ did succeed in demonstrating that the energy of a single 
oscillator in a finite, nonlinear system has a Boltzmann distribution. 

Apparently, the fundamental difficulty with the finite, nonlinear systems as models 
in statistical mechanics is that, although ergodicity is their only pathway to equi- 
partition, they are not, in general, ergodic; indeed, Kolmogorov (11) has shown that 
fairly complicated nonlinear systems are no t ergodic. Northcote and Potts,(Z2) however, 
seem to have achieved time-reversible ergodicity and complete energy sharing in a 
finite system of harmonically-coupled hard spheres that can redistribute the normal- 
mode energies by collision. 

The practical objection to the use of most of these nonlinear models in statistical 
mechanics is that, for most purposes, only numerical analysis is possible. For harmonic 
systems, on the other hand, analytic techniques are well developed and lead to 
intuition-guiding results. 

Since we wish to establish a generally valid basis for the approach of dynamical 
systems to equilibrium, we do not regard ergodicity as fundamental, because it is 
demonstrably not a property of many common dynamical systems that are important 
in statistical physics. We have chosen, instead, what seems to be a natural synthesis 
of the views of Blatt, tl) Jaynes, t3,4) and Katz. (~ Blatt states that interactions between 
the system and the outside world govern the approach to equilibrium, rather than 
interactions within the system itself. We have expressed this point of view mathe- 
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matically in terms of the Liouville function for an infinite chain of coupled harmonic 
oscillators, reduced by integrating over the coordinates of the "outside world," 
to a function pN({X}, {p}, t), given by Eq. (45). This function, which depends only on 
the variables of the system at time t, is a probability density in the 2N-dimensional 
phase space of the segment of chain that is regarded as the thermodynamic system. 
The temporal evolution of p~v is influenced, and ultimately dominated, by the "outside 
world"; therefore, PN cannot satisfy the Liouville equation for the N-particle system, 
although the original p formally satisfies the Liouville equation for the infinite chain. 

The entropy, defined in accord with information theory] 3,5~ turns out to be the 
Gibbs entropy, I~) except that we use the ON of Eq. (45) rather than the Liouville 
function for the isolated N-particle system. This modification of the Gibbs expression 
is evidently the one Gibbs should have used in discussing the approach of canonical 
systems to equilibrium, since it takes into account interaction of the system with the 
heat bath. We show that pu approaches the canonical distribution as t--+ :~ oo for 
the harmonically bound chain, and note that Jaynes t4) has shown the Gibbs entropy 
to yield the correct thermodynamic value when PN is the canonical distribution. 

In our view, then, the approach to equilibrium lies entirely in the statistics, in 
the evolution of our knowledge of the system, and not in dynamics or ergodicity. 
The equations of motion here are time reversible, as is usual, ts-1~ but, as Katz 
has emphasized, tS) the system reaches what we call "equilibrium" because of oar 
increasing inability to supply the information required for utilization of the equations 
of motion to describe the system. During evolution toward equilibrium, no infor- 
mation is lost; everything we knew at t = 0 can be kept on record. But, from an 
examination of, say, Eqs. (5) and (6), we see that, near i t i = 0, only xr(0) is 
important in determining x,.(t), since only J0(2o~t) is nonnegligible for small [ t [. 
As t t[ increases, the higher-order Bessel functions successively become important, 
while the lower-order ones decay in amplitude as I t [-1/2. Thus, it is evident that 
the significance of its own initial condition fades, and increasingly remote events 
become pertinent to any particle in the system as time evolves. Therefore, no matter 
how well we know the initial conditions of our system, we ordinarily do not expect 
to have detailed knowledge of the surroundings, and we see that, ultimately, the 
only pertinent data for our system are the initial conditions of increasingly remote 
parts of the surroundings. Our only choice is to express our knowledge of the distant 
parts of the "outside world" statistically. In the absence of further measurements, 
we describe our finite system as approaching equilibrium as the inwardly diffusing 
statistical fog blankets our ability to extract useful information from the equations 
of motion. 

In this formulation of the approach to equilibrium, ergodicity is not a considera- 
tion, and there are no paradoxes of reversibility- or recurrence, simply because the 
information required or the description of the open system grows monotonously 
with [ t[. 

If  one adopts Blatt's attitude m that all systems are, in reality, open, and that 
statistical mechanics properly pertains only to these imprecisely known systems, then 
the kind of reduced Liouville function developed here seems to be the proper one 
for studying the approach to equilibrium. Even if one regards Blatt's view as an 
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overstatement, since it would exclude microcanonical ensembles from statistical 
mechanics, our reduced Liouville function still seems to be the proper one for the 
treatment of canonical ensembles. 

Equipartition of energy was demonstrated in Section 5, and an equilibrium 
temperature was obtained, both as consequences of statistics, and not of dynamics. 
Temperature is generally regarded as a statistical concept, related to our inability 
to assign detailed energies to the individual particles, and it is appropriate that it 
should be specified in terms of equipartifioned energies. We note that equipartition 
ef  energy is not sufficient for equilibrium; our case (a), for example, succeeds in 
equipartitioning energy, but the Brownian motion, which must exist for a chain that 
is not bound to any home position, is not an attribute of true equilibrium. The system 
of Northcote and Potts a~ also succeeds in equipartitioning energy, but the Gibbs 
entropy is a constant of the motion, and the missing pertinent information does not 
change. All the information necessary for a complete dynamical description of their 
system persists, and the decision to describe it in terms of thermodynamic variables 
is tantamount to a decision to throw away or disregard a considerable body of infor- 
mation. (One can, by this choice, attain equilibrium in a microcanonical ensemble. 
We expect to compare definitions of entropy, and means of attaining the state of 
information described as "equilibrium," in a forthcoming paper.) 

We note also that the information-theoretic approach to equilibrium may lead 
to a final, stationary, equipartioning distribution that differs nontrivially from the 
canonical one. In a future paper, we expect to discuss the simple chain with one point 
fixed, so that Brownian motion is eliminated. The noncanonical momentum corre- 
lations of Eq. (71) still exist, when initial conditions are chosen as in this paper, and 
the final state is clearly one of equilibrium, but the distribution is not of the canonical 
form. 

The entropy, as given by Eq. (47), has the interesting property that it is determined 
entirely by the time-dependent bilinear expectation values of the coordinates and 
momenta of the system; i.e., we may write the matrix W as 

where M i j  ~- ( x i x j ) ,  QiJ ~ (p ip s ) ,  and H~j -~ (x~pj) .  The initial conditions were 
chosen by us (though not necessarily so) such that W begins as a diagonal matrix. 
As t increases, the off-diagonal elements become important as a consequence of 
interactions. For the harmonically-bound oscillator chain, the growth of off-diagonal 
terms may be pictured as a pair of wavefronts moving toward opposite corners of W 
from the main diagonal, leaving behind a decaying, finite-amplitude oscillation. The 
"wave" moves out of W, into the outside world, the off-diagonal elements decay to 
zero, and the diagonal elements decay to their equilibrium values, leaving W once 
again diagonal. But, for the simple chain, off-diagonal elements persist, illustrating 
the necessity for retaining the complete matrix W in the calculation of the entropy, 
rather than adopting a Boltzmann-like approach of calculating the entropy of an 
N-particle system from Pz, the single-particle, reduced Liouville function. 
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10. H I S T O R I C A L  N O T E  

In this section, we attempt to cite some of the most important contributions to 
the ever-popular problem of coupled harmonic oscillators in statistical physics. 

The dynamics of the infinite, simple chain of our case (a) was solved elegantly 
by SchrSdinger] TM who obtained results equivalent to our Eqs. (6) and (7). These 
results were used by Klein and Prigogine, (14J who obtained equipartition of energy, 
corresponding to our Eqs. (58) and (59), for the infinite chain with uncorrelated 
Gaussian initial distributions of the SchrSdinger variables. They did not, however, 
discover the Brownian motion, since they looked only at the SchrSdinger variables 
(which show spring stretchings, but not displacements). 

The most detailed treatment of the simple chain is that by Hemmer, (15~ who 
obtains Brownian motion, as we do, as a consequence of the distribution of initial 
values. He uses an initially-thermal heat bath, rather than our independent Gaussian 
distributions of x's and p's, and obtains a diffusivity twice the value given by Eq. (75). 
(We have not yet discovered the reason for the discrepancy.) Hemmer obtains essen- 
tially our Eq. (80) for the single-particle distribution function, although his matrix 
elements differ somewhat from ours because of the different initial conditions. He 
discusses a number of points not yet treated by us, such as finite chains, quantized 
systems, thermal conductivity, and the Brownian motion of a massive particle in an 
infinite chain. 

Henley and Thirring (16~ treat the dynamics of a finite, harmonically bound chain 
by the normal coordinate method, obtaining results that can easily generate our 
Eq. (8) in the limit. We have seen no other explicit treatment of this system. The 
work of Mazur and Montroll, I6l however, is sufficiently general to yield our Eq. (66) 
for the time-relaxed momentum correlations of any chain of harmonic oscillators. 

We have seen no other calculations of PN, given by Eq. (45), as a reduced 
Liouville function for a general N-oscillator subsystem of an infinite chain, nor have 
we seen the entropy of such a system, as given by Eq. (47). A calculation of pl for 
the simple chain is given by Klein and Prigogine ~14t and by Hemmer, ~5) but entropy 
is not mentioned. 

The covariance matrix W has been used in various calculations of distributions 
of  initially Gaussian variables (17-19~, and we have found one suggestion as~ that the 
entropy could be written in terms of W. 

When the initial distribution of the heat bath in the simple chain is taken to be 
canonical (a convenient procedure with SchrSdinger variables 1~4,15)) the anticorre- 
lation of  adjacent momenta vanishes. This result is displayed explicitly by Rubin, (~~ 
for example, and is easily derived from Hemmer's work. We have seen no analysis 
of the approach to equilibrium, other than the present one, in which the initial 
distribution in the heat bath was chosen to be nonthermal. 

11. C O N C L U S I O N  

Finite subsystems of infinite chains of coupled harmonic oscillators have been 
shown to be useful and instructive models for study of  the approach of a thermo- 



414 Manuel A. Huerta and Harry S, Robertson 

dynamic system to equilibrium. The Gibbs, or information-theoretic,  entropy, 
defined in terms of  the N-particle reduced Liouville function, exhibits the correct 
temporal  behavior and decays to the value expected f rom equilibrium statistical 
mechanics. We conclude, then, that  our  approach  is a valid one that  is direct, analyt- 
ically not  very difficult, physically acceptable, and free o f  the conceptual  difficulties 
related to ergodicity and the paradoxes o f  time reversibility and Poincar6 recurrence. 
We expect treatments in terms of  the reduced Liouville function to be useful and 
enlightening in a variety o f  problems of  nonequil ibrium statistical mechanics, many-  
body theory, and plasma physics. 
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